How Spectrophotometry Works & How Our Leasing Program Saves You Time & Money

Excedr can source all instrument types and accommodate any model preferences your end-user might have. Request a spectrophotometer lease estimate today and see how leasing simplifies equipment procurement, reduces administrative headaches, and removes burdensome upfront costs.
All equipment brands/models are available
The Advantages of Excedr’s Spectrophotometer Leasing Program:
- Eliminates the upfront cost of purchasing equipment by spreading its cost over time
- Minimizes equipment downtime with included complete repair coverage and preventive maintenance
- Takes advantage of potentially 100% tax deductible* payments, providing you significant cash-savings
- Expedites the administrative work needed for instrument procurement and logistics
- Conserves working capital, enabling you to reinvest in your core business and operations (staffing, inventory, marketing/sales, etc.)
- Accommodates all manufacturer and model preferences
*Please consult your tax advisor to determine the full tax implications of leasing equipment.

In chemistry, spectrophotometry is the quantitative and qualitative measurement of a material’s reflection or transmission properties as a function of wavelength.
Materials that are commonly analyzed include nucleic acids like DNA and RNA and protein solutions. It is more specific than the term electromagnetic spectroscopy in that it deals with different wavelengths, such as x-ray, visible light, ultraviolet, near-ultraviolet, infrared, and near-infrared. It’s essential to understand the distinction between these wavelengths of light, as they play an important part in how a spectrophotometer can be used. And knowing how a spectrophotometer operates will help you optimize your work.
Spectrophotometry uses photometers (referrred to as spectrophotometers) to measure a light beam’s intensity as a function of its color (wavelength). Important features of these instruments are spectral bandwidth (the range of colors it can transmit through the test sample), the percentage of sample transmission, the logarithmic range of sample absorption, and sometimes a percentage of reflectance measurement.
A standard spectrophotometer’s uses include the measurement of transmittance or reflectance in solutions and solids. These models measure gases as well. However, spectrophotometers are also designed to measure the diffusivity on any of the listed light ranges that cover around 200 nm – 2500 nm, using different controls and calibrations.
Within these ranges of light, calibrations are needed on the machine using standards that vary in type depending on the wavelength of the photometric determination.
An example of an experiment in which spectrophotometry is used is the determination of the equilibrium constant of a solution. A certain chemical reaction within a solution may occur in a forward and reverse direction where reactants form products and products break down into reactants.
At some point, this chemical reaction will reach a point of balance called an equilibrium point. To determine the respective concentrations of reactants and products at this point, the light transmittance of the solution can be tested using spectrophotometry.
In other words, researchers can observe how much light is absorbed by measuring the intensity of light the sample emits as the light passes through the sample solution. This is indicative of the concentration of certain chemicals in the solution that do not allow light to pass through.
Application & Types

Spectrophotometer uses span various scientific fields, such as physics, materials science, chemistry, biochemistry, and molecular biology. They are widely used in many industries, including semiconductor, laser, and optical manufacturing, as well as printing and forensic examination. Furthermore, they are utilized in laboratories for the study of chemical substances.
Ultimately, depending on the control or calibration, these tools can determine what substances are present in a target and exactly how much through calculations of observed wavelengths.
More specifically, spectrophotometry is an important technique used in many biochemical experiments involving DNA, RNA, protein isolation, enzyme kinetics, and biochemical analyses. A brief explanation of the procedure includes comparing the absorbency of a blank sample that does not contain a colored compound to a sample that contains a colored compound. The spectrophotometer is used to measure colored compounds in the visible region of light (between 350 nm and 800 nm); thus, it can find more information about the studied substance.
In biochemical experiments, a chemical and/or physical property is chosen. The procedure used is specific to that property and can derive more information about the sample, such as the quantity, purity, enzyme activity, etc.
It is a helpful procedure for protein purification and can also be used to create optical assays of a compound. Because the reader measures the wavelength of a compound through its color, a dye-binding substance can be added so that it can undergo a color change and be measured.
These instruments have been developed and improved over the decades and have been widely used among chemists. It is considered to be a highly accurate instrument that is also very sensitive and therefore extremely precise, especially in determining color change.
This method is also convenient for use in laboratory experiments because it is an inexpensive and relatively simple process.
UV-Vis/NIR
The most common spectrophotometers are used in the ultraviolet and visible regions of the spectrum, while others can be used in the near-infrared region.
Visible region 400–700 nm spectroscopy is used extensively in colorimetry science. It is known that it operates best at the range of 0.2-0.8 O.D. Ink manufacturers, printing companies, textiles vendors, and many more need the data provided through colorimetry.
They take readings in the region every 5–20 nanometers along the visible area and produce a spectral reflectance curve or a data stream for alternative presentations. These curves can be used to test a new batch of colorants to check if it makes a match to specifications, e.g., ISO printing standards.
Traditional visible region spectrophotometers cannot detect if a colorant or the base material has fluorescence. This can make it difficult to manage color issues if one or more of the printing inks is fluorescent.
Where a colorant contains fluorescence, a bi-spectral fluorescent system is used. There are two major setups for visual spectrum machines, d/8 (spherical) and 0/45. The names are due to the geometry of the light source, observer, and interior of the measurement chamber.
Scientists use this instrument to measure the amount of compounds in a sample. If the compound is more concentrated more light will be absorbed by the sample; within small ranges, the Beer-Lambert law holds, and the absorbance between samples varies with concentration linearly.
In the case of printing measurements, two alternative settings are commonly used- without/with UV filter to control better the effect of UV brighteners within the paper stock.
Samples are usually prepared in cuvettes; depending on the region of interest, they may be constructed of glass, plastic (visible spectrum region of interest), or quartz (far UV spectrum region of interest).Additional applications of ultraviolet-visible spectroscopy include: Estimating dissolved organic carbon concentration, measuring specific ultraviolet absorption for metric of aromaticity, and Bial’s Test for concentration of pentoses.
Infrared Radiation (IR)
Spectrophotometers designed for the infrared region of the electromagnetic spectrum are quite different because of the technical requirements of measurement in that region.
One major factor is the type of photosensors available for different spectral regions. Still, infrared measurement is challenging because virtually everything emits IR light as thermal radiation, especially at wavelengths beyond 5 micrometers (μm).
Another complication is that quite a few materials such as glass and plastic absorb infrared light, making it incompatible as an optical medium.
Ideal optical materials are salts, which do not absorb strongly. Samples prepped for IR may be smeared between two discs of potassium bromide or ground with potassium bromide and pressed into a pellet. Where aqueous solutions are to be measured, insoluble silver chloride is used to construct the cell.
Spectrophotometer Leases to Meet Your Needs

If you and your laboratory require spectrophotometry instrumentation, we can help. Our program helps you procure a wide range of analytical instruments, from double beam spectrophotometers, single beam spectrophotometers, and microvolume spectrophotometers to portable spectrophotometers.
Want something more specific? Our UV-VIS/NIR spectrometer and IR spectrometer leases may be what you’re looking for.
Have an instrument quote from a manufacturer? Request a lease estimate below, and we can create customized terms specifically for you. Or, if you’d just like to learn more about our program, get in touch with us above.
Operating Lease
This off-balance sheet financing structure provides three options at the end of the term. The lessee has the option to return the equipment to the lessor, renew at a discounted rate, or purchase the instrument for the fair market value. Monthly payments are also 100% tax deductible which yields additional cash savings.
Sale-Leaseback
If you recently purchased equipment, Excedr can offer you cash for your instrument and convert your purchase into a long-term rental. This is called a sale leaseback. If you’ve paid for equipment within the last ninety days, we can help you recoup your investment and allow you to make low monthly payments. This also frees up cash in your budget rather than tying it down to the instrument.
Spectrophotometer Manufacturers & Models
Learn More
Thermo Fisher Scientific:
SPECTRONIC 200, GENESYS 30 Vis, GENESYS 40 Vis/50 UV-Vis, GENESYS 140 Vis/150 UV-Vis, GENESYS 180 UV-Vis, Evolution™ 350 UV-Vis, Evolution™ 260 Bio UV-Vis, Evolution™ 201/220 UV-Vis, BioMate™ 160 UV-Vis, Nanodrop™ 2000/2000c, Nandrop™ One/OneC Microvolume UV-Vis, Nanodrop™ 8000, Nanodrop™ 3300 Fluorospectrometer
Cole-Parmer:
Cole-Parmer UV-Visible Spectrophotometer, Visible Spectrophotometer, Scanning UV-Visible Spectrophotometers
Shimadzu:
UV-1280 UV-Vis Spectrophotometer, BioSpec-nano Micro-volume UV-Vis, UV-1900i UV-Vis, UV-2600i UV-Vis, UV-2700i UV-Vis, UV-3600i Plus UV-Vis-NIR, SolidSpec-3700i/3700i DUV UV-Vis-NIR
Horiba:
iHR Series, iHR320, iHR550, MicroHR series, MicroHR Auto, Lumetta,TRIAX Series, TRIAX 180, VS70-PDA, VS70-CCD-HD, VS70-CCD-HS, FHR 1000, FHR 640, Gemini 180
PerkinElmer:
LAMBDA 1050+ UV-Vis-NIR, LAMBDA 850+ UV-Vis, LAMBDA 365 UV-Vis, LAMBDA 465 UV-Vis, LAMBDA 265 UV-Vis
Eppendorf:
BioPhotometer D30, BioSpectrometer basic, BioSpectrometer kinetic, BioSpectromter fluorescence
Agilent:
Cary 60 UV-Vis, Cary 3500 UV-Vis, Cary 4000 UV-Vis, Cary 5000 UV-Vis, Cary 6000i UV-Vis-NIR, Cary 7000 UMS
Jenway:
6300, 6320D, 6305, 7200, 7300, 7305, 7310, 7315, 7410, 7415, 6700, 6705, 6715, 6850, Genova Bio, Genova Plus, Genova Nano, 7415 Nano
Implen:
NanoPhotometer, Cuvette, NP80, N60, N50, C40, DiluPhotometer, OD600
Jasco:
V-730 , V750, V-760, V-770, V-780, MV-3000 Series, MV-3100, MV-3150, MV-3200, MV-3250, MV-3300, MV-3350
VWR
V-1200, UV-1600PC, UV-3100PC, V-3000PC, VWR Double Beam, UV-6300PC
Hach:
DR1900 Portable, DR3900 Laboratory, DR6000 UV-Vis Laboratory
Biochrom:
ioDrop Duo+, BioDrop uLite+, WPA Biowave, WPA Biowave II, WPA Lightwave II, WPA S1200+, WPA S800+, WPA CO8000, Libra S80, Libra S80PC, Libra S70, Libra S70PC, Libra S60., Libra S60PC, Libra S50, Libra S50PC, Libra S50PC, Libra S22, Libra S21, Libra S6+, Libra S4+
Buck Scientific
Mettler Toledo:
UV5, UV7, UV, UV5Bio, UV5Nano
and more!